PREPARATION OF RUTILE POWDERS BY VAPOR PHASE REACTION OF TiC14-H2-C02 SYSTEM Akio KATO and Yoko SUYAMA Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Hakozaki, Fukuoka 812 Titanium dioxide powders of 98 % rutile content were obtained by vapor phase reaction of TiCl₄-H₂-CO₂ system at temperatures above 1000 °C. The average particle sizes of products were $0.11 \sim 0.66~\mu$. The sizes decreased with increasing reaction temperatures. ## Introduction TiO_2 produced by the chloride process is in the form of either anatase, rutile or their mixture depending on the reaction conditions. Rutile TiO_2 is more desirable because of its superior pigmentary characteristics and there are many patents concerning the control of the crystal form in the chloride process, in which $TiCl_4$ is either oxidized or hydrolyzed at temperatures between 1000° and 1400 $^\circ$ C in the presence of some nucleating agents, such as $AlCl_3.$ In this work, the vapor phase reaction of $TiCl_4-H_2-CO_2$ system was found to give 98 % rutile TiO_2 without additives. ## Experimental TiCl₄ from Ishizu Pharmaceutical Co., Ltd. was used. ³⁾ The mixture of CO₂ and H₂ was deoxidized by an activated Cu column and dried by a dry ice-ethanol trap. A mullite tube (28 mm I.D.) was used as a reaction tube. The H₂-CO₂ mixture saturated with TiCl₄ was injected into the reaction zone at 800 $^{\circ}$ C through a small mullite tube (4 mm I.D.). The products were collected in a flask at the end of the reaction tube. ## Results and Discussion Table 1 shows the reaction conditions and the properties of the products. The results with $TiCl_4-H_2O$ system are also listed in Table 1 for comparison. The product by the reaction at 900 °C was black titanium suboxide. This suboxide could be oxidized into white rutile by heating in air at temperatures between 260° and 530 °C (weight increase by oxidation: 2.8 %). The products produced at temperatures above 1000 °C were titanium dioxide and rutile contents were about 98 %. The product at 1000 °C, however, had a detectable deficiency of oxygen (weight increase by oxidation: 0.1 %) and was colored in gray. No weight increase by heating in air could be detected with the products at 1100° and 1205° °C. It has been observed that rutile content of 110° powders from 110° and 1205° °C. It has been observed that only when the reaction gases are injected into the high-temperature reaction zone | Run | Reaction
temperature
(°C) | Gas compositiona) | | | | Wrb) | Lattice const.c) | | |--|---------------------------------|-----------------------|------------------------|-----------------------|-------|----------------------------|---------------------|--------------------| | | | TiCl ₄ (%) | CO ₂
(%) | H ₂
(%) | Color | Wr ⁵)
(wt%) | a . (Å)
(±0.002) | c。(Å)
(± 0.002) | | 1 | 900 | 3.4 | 51.7 | 44.9 | black | _ | - | _ | | 2 | 1000 | 3.4 | 51.7 | 44.9 | gray | 98 | 4.600 | 2.955 | | 3 | 1100 | 3.4 | 51.7 | 44.9 | white | 98 | 4.598 | 2.959 | | 4 | 1205 | 3.4 | 51.7 | 44.9 | white | 97 | 4.595 | 2.960 | | $\begin{bmatrix} \text{TiCl}_4 - \text{H}_2\text{O system} \\ 6^{\text{d}} \end{bmatrix} = 1100$ | | | (H ₂ O) | | | 2.0 | 4 500 | 2.050 | | 6 7 | 1100 | 1.4 | 1.7 | | white | 38 | 4.596 | 2.959 | Table 1. Reaction conditions and properties of products. - a) Total flow rate: 200 ml/min b) Rutile content by Spurr's method. 4) - c) Values in ASTM card no.4-0551: $a_0 = 4.594 \text{ Å}$, $c_0 = 2.958 \text{ Å}$. - d) TiCl4 and H2O were mixed at 1050 °C by using nitrogen as a carrier gas. above 900 °C and that rutile content was only 20 to 40 % even at 1100 °C. $^{5)6}$) The formation reactions of TiO_2 from $TiCl_4-H_2-CO_2$ system can be represented as: $CO_2 + H_2 = H_2O + CO$ (1) and $TiCl_4 + 2H_2O = TiO_2 + 4HC1$ (2) Table 1 shows that rutile content of TiO_2 from $TiCl_4-H_2O$ system (eq.(2)) is 38 %. Therefore, the high rutile content of TiO_2 from $TiCl_4-H_2-CO_2$ system may be related to the existence of H_2 . The mechanism of the hydrogen effect is in investigation. The electron micrographs showed that TiO_2 particles from $TiCl_4-H_2-CO_2$ system were nearly spherical with the average particle sizes about 0.66, 0.20 and 0.11 μ at 1000° , 1100° and 1205° C, respectively. The most suitable particle size for TiO_2 powders as pigment is $0.2\sim0.3\,\mu$. It seems that the particle sizes of TiO_2 powders from $TiCl_4-H_2-CO_2$ system can be controlled by the reaction conditions. ## References and Note - 1) C.F.Powell, J.H.Oxley and J.M.Blocher Jr., ''Vapor deposition'', John Wiley Sons, Inc., New York, (1966), p.423. - 2) J.Dunderdale, Ger. 2,028,599 (1971). d.Piccolo, Brit. 979,564 (1968). E.Merle, Ger. 2,037,990 (1971). W.Leslie, Brit. 1,045,453 (1971). - 3) Purity is 99.99 %. Impurities: sulfate < 0.003 %, heavy metals < 0.001 % and iron < 0.0005 %. - 4) R.A.Spurr and H.Myers, Anal Chem., 29, 760 (1957). - 5) A.Matsumoto, S.Sakamoto, J.Shiokawa, H.Tamura and T.Ishino, Kogyo Kagaku Zassi, 70, 2115 (1967). - 6) Y.Suyama, K.Itoh and A.Kato, to be published. (Received July 4, 1974)